Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

How contact works

In LS-DYNA, a contact is defined by identifying (via parts, part sets, segment sets, and/or node sets) what locations are to be checked for potential penetration of a slave node through a master segment.

A search for penetrations, using any of a number of different algorithms, is made every time step. In the case of a penalty-based contact, when a penetration is found a force proportional to the penetration depth is applied to resist, and ultimately eliminate, the penetration. Unless otherwise stated, the contacts discussed here are penalty-based contacts as opposed to constraint-based contacts. Rigid bodies may be included in any penalty-based contact but in order that contact force is realistically distributed, it is recommended that the mesh defining any rigid body be as fine as that of a deformable body.

Though sometimes it is convenient and effective to define a single contact that will handle any potential contact situation in a model, it is permissible to define any number of contacts in a single model. It is generally recommended that redundant contact, i.e., two or more contacts producing forces due to the same penetration, be avoided by the user as this can lead to numerical instabilities. To enable flexibility for the user in modeling contact, LS-DYNA presents a number of contact types and a number of parameters that control various aspects of the contact treatment. In the following sections, contact types are first discussed with recommendations regarding their application. A description of the contact parameters then presented.

sb 2001